Abstract

As an emerging pollutant in the aquatic environment, microcystin-LR (MC-LR) can enter the body through multiple pathways, and then induce apoptosis and gonadal damage, affecting reproductive function. Previous studies focused on male reproductive toxicity induced by MC-LR neglecting its effects on females. The apoptotic signal-regulated kinase 1 (ASK1) is an upstream protein of P38/JNK pathway, closely associated with apoptosis and organ damage. However, the role of ASK1 in MC-LR-induced reproductive toxicity is unclear. Therefore, this study investigated the role of ASK1 in mouse ovarian injury and apoptosis induced by MC-LR. After MC-LR exposure, ASK1 expression in mouse ovarian granulosa cells was increased at the protein and mRNA levels, and decreased following pretreatment by antioxidant N-acetylcysteine, suggesting that MC-LR-induced oxidative stress has a regulatory role in ASK1 expression. Inhibition of ASK1 expression with siASK1 and NQDI-1 could effectively alleviate MC-LR-induced mitochondrial membrane potential damage and apoptosis in ovarian granulosa cells, as well as pathological damage, apoptosis and the decreased gonadal index in ovaries of C57BL/6 mice. Moreover, the P38/JNK pathway and downstream apoptosis-related proteins (P-P38, P-JNK, P-P53, Fas) and genes (MKK4, MKK3, Ddit3, Mef2c) were activated in vivo and vitro, but their activation was restrained after ASK1 inhibition. Data presented herein suggest that the ASK1-mediated P38/JNK pathway is involved in ovarian injury and apoptosis induced by MC-LR in mice. It is confirmed that ASK1 has an important role in MC-LR-induced ovarian injury, which provides new insights for preventing MCs-induced reproductive toxicity in females.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call