Abstract

The kinetics controlling the electrical transport inside the μc-Si tunnel-recombination junction (TRJ) of a-Si:H/a-Si:H tandem solar cells was studied in detail with computer simulations. Trap assisted recombination tunneling and Poole–Frenkel mechanisms were included in our analysis. Three different μc-Si tunnel junctions were investigated: (a) n-p, (b) n-oxide-p and (c) n-i-p. The highest theoretical efficiencies in a-Si:H/a-Si:H tandem cells were achieved with the n-i-p tunnel junction structure. The impact of the μc-Si effective masses, mobility gap, and mobilities in the tandem solar cell efficiency is also studied in this article. Several a-Si:H/a-Si:H tandem solar cells were made with the μc-Si tunnel configurations of types (b) and (c). In all of these samples one extra oxide layer was needed at the i-a-Si:H/n-μc-Si interface. Both tunnel junctions lead us to comparable experimental tandem solar cell efficiencies. When the n-i-p structure is implemented as TRJ in the a-Si:H/a-Si:H tandem solar cell, efficiencies sensitively depend upon the tunnel junction intrinsic layer thickness. The optimization of this thickness provides a more controlled way of maximizing the tandem solar cell efficiency. Illuminated J–V and QE characteristics were successfully fitted using computer modeling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.