Abstract
Understanding the relationship between molecular structure and solid-state arrangement informs about the design of new organic semiconductor (OSC) materials with improved optoelectronic properties. However, determining their atomic structure remains challenging. Here, we report the lattice organization of two non-fullerene acceptors (NFAs) determined using microcrystal electron diffraction (MicroED) from crystals not traceable by X-ray crystallography. The MicroED structure of o-IDTBR was determined from a powder without crystallization, and a new polymorph of ITIC-Th is identified with the most distorted backbone of any NFA. Electronic structure calculations elucidate the relationships between molecular structures, lattice arrangements, and charge-transport properties for a number of NFA lattices. The high dimensionality of the connectivity of the 3D wire mesh topology is the best for robust charge transport within NFA crystals. However, some examples suffer from uneven electronic coupling. MicroED combined with advanced electronic structure modeling is a powerful new approach for structure determination, exploring polymorphism and guiding the design of new OSCs and NFAs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.