Abstract

The upper intracontinental crust carries an excess horizontal compression, a remnant stress that arises because exhumation-related thermoelastic relaxation of deeper horizontal stress lags behind the reduction in overburden stress. This remnant stress appears in Earth stress data as an interchange in orientation of vertical σ 2 and horizontal σ 3 so that the ratio of least compressive horizontal stress ( S hmin ) to vertical compressive stress ( S v ) is >1 in much of the top 2 km of intracontinental crust. In theory, rocks exhumed from beneath 2 km should carry some record of this stress interchange, and this record is found in the orientation and density of healed, filled, and open micro-cracks in exhumed New England granitoids. Fluid inclusion planes (FIP) of older, healed microcracks are the best developed in a vertical orientation, and younger filled and open microcracks are best developed in the horizontal plane. Lateral unloading during initial isobaric cooling from the solidus of laterally constrained granite allows early microcrack growth once horizontal tension on the microscopic scale develops in response to vertical compression from the overburden load. During exhumation, further relaxation of lateral compressive stress takes place by a combination of decompression and cooling so that Δ S hmin /Δ S v

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.