Abstract

For the first time, this paper explores the role of hydration kinetics on microcrack development in cement mortars using the μ-CT technique with a resolution of 2.2 µm. Three binders were tested: fine-grained ordinary Portland cement (OPC) with Blaine fineness of 391 m2/kg, coarse-grained OPC made from the same clinker with Blaine fineness of 273 m2/kg, and H-cement as a representative of the alkali-activated binder. It was found that most microcracks have a width in the range of 5-10 µm, increasing their occurrence with the progress of sealed hydration. While H-cement and coarse-grained OPC showed a comparable number of microcracks, fine-grained OPC exhibited more than twice the number of microcracks. In this sense, high hydration kinetics induce more microcracks, promoting later coalescence into visible cracks and disintegration of concrete at the end. Therefore, durable concrete with minimum microcracks should be derived from slow hydration kinetics or alkali-activation processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.