Abstract
Pharmaceuticals have been detected in surface waters of the US and Europe, originating largely from two sources, sewage effluent and agricultural runoff. These compounds often occur as mixtures leading to potential combined effects. In order to investigate the effects of a realistic pharmaceutical mixture on an ecosystem, a study utilizing 15 of 12,000 L aquatic microcosms treated with eight common pharmaceuticals (atorvastatin, acetaminophen, caffeine, sulfamethoxazole, carbamazepine, levofloxacin, sertraline, and trimethoprim) at total (summed) molar concentrations of 0, 0.044, 0.608, 2.664, and 24.538 μmol/L ( n = 3) was conducted. Phytotoxicity was assessed on a variety of somatic and pigment endpoints in rooted ( Myriophyllum sibiricum) and floating ( Lemna gibba) macrophytes over a 35-day period. EC 10, EC 25 and EC 50 values were calculated for each endpoint exhibiting a concentration-dependent response. Generally, M. sibiricum and L. gibba displayed similar sensitivity to the pharmaceutical mixture, with phytotoxic injury evident in both species, which was concentration dependent. Through single compound 7-day daily static renewal toxicity tests with L. gibba, the sulfonamide antibiotic sulfamethoxazole, the fluoroquinolone antibiotic levofloxacin and the blood lipid regulator atorvastatin were found to be the only compounds to elicit phytotoxic effects in the concentration range utilized (0–1000 μg/L). Atorvastatin concentration was highly correlated to decreased pigment content in L. gibba, likely inhibiting the known target enzyme HMGR, the rate-limiting enzyme in isoprenoid biosynthesis. Hazard quotients were calculated for both microcosm and laboratory studies; the highest HQ values were 0.235 ( L. gibba) and 0.051 ( L. gibba), which are below the threshold value of 1 for chronic risks. The microcosm data suggest that at an ecological effect size of >20%, biologically significant risks are low for L. gibba and M. sibiricum exposed to similar mixtures of pharmaceutical compounds. For M. sibiricum and L. gibba, respective minimum differences of 5 and 1%, were detectable, however, these effect sizes are not considered ecologically significant.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.