Abstract
Microcontact printing of proteins from an elastomeric stamp has been demonstrated on a limited number of substrates. This work explores the generality of this method of patterning proteins by examining the role of surface wettability of both the substrate and the stamp in microcontact printing. The substrates used in this study consisted of two-component, mixed self-assembled monolayers (SAMs) of alkanethiols on gold presenting −CH3 and polar groups −COOH, −OH, or −(OCH2CH2)6OH. We found that protein adsorbed on a stamp successfully transfers onto a mixed SAM only when the mole fraction of polar functionality on the SAM exceeded a particular threshold. Although the mole fraction of polar groups required was different for each of the three types of mixed SAMs, the advancing water contact angles on these surfaces nearly coincided. Moreover, the minimum wettability of the SAM needed for the transfer of proteins decreased when the wettability of the stamp was decreased. Our findings suggest that the differenc...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.