Abstract

The dynamics of confined droplets in shear flow is investigated using computational and experimental techniques for a viscosity ratio of unity. Numerical calculations, using a boundary integral method (BIM) in which the Green’s functions are modified to include wall effects, are quantitatively compared with the results of confined droplet experiments performed in a counter-rotating parallel plate device. For a viscosity ratio of unity, it is experimentally seen that confinement induces a sigmoidal droplet shape during shear flow. Contrary to other models, this modified BIM model is capable of predicting the correct droplet shape during startup and steady state. The model also predicts an increase in droplet deformation and more orientation toward the flow direction with increasing degree of confinement, which is all experimentally confirmed. For highly confined droplets, oscillatory behavior is seen upon startup of flow, characterized by an overshoot in droplet length followed by droplet retraction. Finally, in the case of a viscosity ratio of unity, a minor effect of confinement on the critical capillary number is observed both numerically and experimentally.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.