Abstract

We describe the generation of mechanically robust superhydrophobic surfaces, which carry a hierarchical roughness that is composed of silicon microcones and silicon nanograss. Both micro and nanostructures were fabricated using mask-free dry etching processes. The microcones were obtained utilizing a cryogenic deep reactive ion etching (DRIE) process run in the overpassivation regime. By varying process parameters, surfaces with different microcones geometries and densities were achieved. The nanograss was fabricated using a modified DRIE process with alternating etching and passivation cycles ('BOSCH process'). All surfaces were covered with a layer of a fluorinated film so that superhydrophobic structures resulted. Depending on microcone geometry and density, the advancing contact angle ranged between 170° and 180°, and roll-off angles of 10 μL drops between 30' (0.5°) and 6° were observed. The samples were exposed to varying shear loads, and the changes in the morphology were recorded by using electron microscopy. The wetting angles of the mechanically challenged surfaces were recorded and correlated with the mechanical properties of the samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.