Abstract

While a wide variety of new scintillators are now available, cerium-doped lanthanide halide scintillators have shown a strong potential toward fulfilling the needs of highly demanding applications such as radioisotope identification at room temperature, homeland security, quantitative molecular imaging for medical diagnostics, and disease staging and research. Despite their extraordinary advantages in terms of light yield and response uniformity over a wide energy range, issues related to reliable, large volume manufacturing of these high-light-yield materials in a rapid and economic manner has not been resolved or purposefully addressed. Here we report on synthesizing LaBr 3:Ce scintillator using a thermal evaporation technique, which offers the potential to synthesize large quantities of small-to-large volume, high-quality material in a time-efficient and cost-effective manner. To date we have successfully applied this method to form both microcolumnar films and thick polycrystalline slabs of LaBr 3:Ce, and have characterized their light yield, response linearity, decay time and afterglow.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call