Abstract

We report the growth of titanium nitride microcolumns under multipulse Nd:yttrium aluminum garnet (λ = 1.064 μm, τ ∼ 300 ns, ν = 30 kHz) laser irradiation of titanium targets in nitrogen atmosphere. The laser intensity value was chosen below the single-pulse melting threshold of titanium. The evolution with the number of laser pulses of the target morphology, crystalline state, and chemical composition at the surface as well as in depth were investigated by scanning electron microscopy, x-ray diffractometry, Raman spectroscopy, and wavelength dispersive x-ray spectroscopy. Under the action of the laser pulses, during progressive surface nitridation, an initial rippled morphology developed, which evolved with further irradiation to TiN microcolumns. In-depth investigations showed a granular zone beneath the surface consisting of rutile and anatase phase TiO2, followed by a compact needlelike layer of titanium until the interface with the unaffected target material.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.