Abstract
High temperature Proton Exchange Membrane Fuel Cells (HT-PEMFC) have attracted the attention of researchers in recent years due to their advantages such as working with reformed gases, easy heat management and compatibility with micro-cogeneration systems. In this study, it is aimed to designed, manufactured and tested of the HT-PEMFC stack based on Polybenzimidazole/Graphene Oxide (PBI/GO) composite membranes. The micro-cogeneration application of the PBI/GO composite membrane based stack was investigated using a reformat gas mixture containing Hydrogen/Carbon Dioxide/Carbon Monoxide (H2/CO2/CO). The prepared HT-PEMFC stack comprises 12 cells with 150 cm2 active cell area. Thermo-oil based liquid cooling was used in the HT-PEMFC stack and cooling plates were used to prevent coolant leakage between the cells. As a result of HT-PEMFC performance studies, maximum 546 W and 468 W power were obtained from PBI/GO and PBI membranes based HT-PEMFC stacks respectively. The results demonstrate that introducing GO into the PBI membranes enhances the performance of HT-PEMFC technology and demonstrated the potential of the HT-PEMFC stack for use in micro-cogeneration applications. It is also underlined that the developed PBI/GO composite membranes have the potential as an alternative to commercially available PBI membranes in the future.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.