Abstract
Subterranean environments are often characterized by a natural gradient of microclimatic conditions and trophic resources, showing a higher trophic availability and a lower microclimatic stability in the shallowest area (close to the cave entrance), while the opposite occurs in the deepest sections. The shallowest areas of subterranean environments (e.g., the entrance and twilight zone, Mesovoid Shallow Substratum) act as ecotones between the surface habitats and the deep areas, creating a particular habitat which can be exploited by numerous species with different degrees of adaptation to subterranean environments. Species living in these ecotones may hold a key role in sustaining the entire ecosystem, as they are likely one of the major drivers of allochthonous organic matter. Indeed, these species are usually facultative cave-dwellers, meaning that they are able to exit and forage on the surface. Once these species are back inside the cave, they provide the local community with different typologies of organic matter (e.g., feces, eggs), which represent one of the most important sources of organic carbon. Therefore, studying which ecological features may exert significant effects on the abundance of these species may be of great help in understanding the ecosystem dynamics and the functional role of each species. In this study we analyzed the data collected through a year-round monitoring program, aiming to assess the potential effects that both abiotic and biotic features may have on the abundance of three facultative cave species. We focused on seven caves located in Monte Albo (Sardinia, Italy). The cave environments were divided into 3-meter sectors, and within each cave sector, microclimatic and biological data were seasonally recorded. We focused on the following facultative cave species: the spiders Metellina merianae and Tegenaria sp. and the snail Oxychilus oppressus. Different relationships were observed between the ecological features and the abundance of the three species. The two spiders were more abundant in warmer cave sectors closer to the cave entrance, especially the M. merianae. On the other hand, the snail tended to be more abundant farther from the cave entrance and in more illuminated cave sectors, probably because sunlight promotes the abundance of some of its trophic resources (e.g., lichens, vegetation). Furthermore, O. oppressus was the only species whose abundance and cave distribution was significantly affected by seasonality. This study provides useful and novel information to understand the population dynamics of facultative cave species and their role in subterranean ecosystems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.