Abstract

Abstract. Cities are particularly affected by climate change impacts. Due to global warming, the frequency and intensity of summer heat events increases for many cities around the globe. Urban climatological studies have shown significant positive trends in the number of hot days and tropical nights. Heat stress is an important health as well as economic risk. Thus, urban planning needs to adapt to climate change. This requires a sound scientific analysis of different adaptation measures and management options, which must be based on appropriate data, models and scenarios to assess their suitability and efficacy. The goal of this paper is to assess the suitability of a low cost weather station network consisting of 33 NETATMO weather sensors and ultrasonic anemometers to measure air temperature, relative air humidity, wind speed and wind direction of a 16 ha study area in Cologne with high temporal and spatial resolution to support microclimatological modelling. The temperature and humidity sensors were calibrated against a research grade reference sensor under laboratory conditions. In addition, a research grade meteorological station (Campbell Sci.) was set up in the study area as a reference. The NETATMO sensors were placed to identify local microclimatic effects due to different surface types, vegetation and building structures. Using descriptive statistical analyses and pairwise comparisons, significant differences in the microclimatic conditions of the various sites were found, which can clearly be attributed to specific small scale microclimate factors. Significant differences were particularly identified comparing an avenue and a narrow street as well as a backyard and an urban park area. The sensors proved to provide data reliably and with suitable quality to measure microclimatic effects. The choice of sensors lends itself well for citizen participation, needed to facilitate climate change adaptation. In our further research, the data will be used as reference data for microclimatological modelling with ENVI-met investigating particularly options of mitigating climate change effects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call