Abstract

Agrivoltaic systems have been proposed as the most prominent synergetic application of agricultural and energetic sectors. Integrating solar power generating with agricultural activities is relatively new; however, it has started with implementing the PV panels into the greenhouses. Comparatively, openfield agrivoltaics systems are still growing and under-development in many locations around the world. The urge to explore innovative solutions for the increasing demand for electricity and food has been the main motivation for the research centers, researchers, and governments to escalate agrivoltaics development globally. In this paper, the current and most recent projects and studies of open-field agrivoltaic systems are presented, compared, and analyzed in order to anticipate the potential and path of development for agrivoltaics in the near future. Several pieces of research from different countries globally were included to illustrate the main features and performance indicators of agrivoltaic systems. The paper concludes that the agrivoltaics system has the potential to grow to big-scale projects in different climatic regions because it provides benefits either by increasing the Land Equivalent Ratio (LER), protecting the plants from severe ambient weather, and diversifying the income for farmers. New technologies and methods have been integrated with the agrivoltaics systems in different projects to optimize the model; however, many aspects of development could be introduced in the near future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call