Abstract
Summary The microclimate experienced by organisms is determined by local weather conditions. Yet the environmental data available for predicting the effect of climate on the distribution and abundance of organisms are typically in the form of long‐term average monthly climate measured at standardized heights above the ground. Here, we demonstrate how hourly microclimates can be modelled mechanistically over decades at the continental scale with biologically suitable accuracy. We extend the microclimate model of the software package niche mapper to capture spatial and temporal variation in soil thermal properties and integrate it with gridded soil and weather data for Australia at 0·05° resolution. When tested against historical observations of soil temperature, the microclimate model predicted 85% of the variation in hourly soil temperature across 10 years from the surface to 1 m deep with an accuracy of 2–3·3 °C (c. 10% of the temperature range at a given depth) across an extremely climatically diverse range of sites. This capacity to accurately and mechanistically predict hourly local microclimates across continental scales creates new opportunities for understanding how organisms respond to changes in climate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.