Abstract
Changes in mobile phase composition during high performance liquid chromatography (HPLC) gradient elution coupled to mass spectrometry (MS) sensitively affect electrospray operation modes. In this work, we identify the influences of dynamic changes in bulk conductivity on the cone-jet stability island for aqueous acetonitrile and aqueous methanol mobile phases commonly used in reversed-phase HPLC. Bulk conductivities of the mobile phases were varied by adding different amounts of formic acid. A commercial microchip-HPLC/ESI-MS configuration was modified to enable in situ electrospray diagnostics by frequency analysis of the microchip emitter current and spray imaging. This approach facilitated the detection of different spray modes together with their onset potentials. The established spray modes are described and the differences in onset potentials and stability regions explained by the physicochemical properties of the electrosprayed liquid.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.