Abstract

The attractive features of a boron-doped diamond (BDD) thin-film detector for microchip capillary electrophoretic (CE) separations of dye-related amino-substituted aromatic compounds are described. The diamond electrode was employed in the end-column amperometric detection of 4-aminophenol (4-AP), 1,2-phenylenediamine (1,2-PDA), 2-aminonaphthalene (2-AN), 2-chloroaniline (2-CA), and o-aminobenzoic acid (o-ABA), and its attractive behavior was compared to commonly used screen-printed carbon and glassy-carbon electrodes. These conventional electrode materials exhibit a significant degree of passivation and low sensitivity to the above-mentioned environmental pollutants. The diamond-based electrochemical detection system displayed a favorable analytical performance, including lower noise levels, higher peak resolution with enhanced sensitivity, and improved resistance against electrode passivation. Factors influencing the on-chip analysis were assessed and optimized. The diamond detector displayed detection limits of 2.0 and 1.3 microM for 4-AP and 2-AN, respectively, and a wide linear response for these compounds over the 2-50 microM range. The enhanced stability was demonstrated by relative standard deviation (RSD) values of 1.4% and 4.7% for 100 microM 1,2-PDA and 200 microM 2-CA, respectively, for repetitive detections (n = 7). Besides, the simultaneously observed current decrease was 2.4 and 9.1% for 1,2-PDA and 2-CA, respectively (compared to 21.8 and 41.0% at the screen-printed carbon electrode and 28.3 and 34.1% at the glassy carbon electrode, respectively). The favorable properties of the diamond electrode indicate great promise for environmental applications in CE and other microchip devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call