Abstract

Microchannel plate (MCP), a high-porosity glass membrane used as an electron multiplier in analytical/scientific instruments for the detection of energetic photons and charged particles is demonstrated here as a highly effective bipolar electrode (BPE) for electrokinetic focusing of anions. Assembled between a pair of microfluidic channels filled with an electrolyte buffer and subjected to a sufficient bias potential, MCP supports faradaic reactions, owing to its semiconducting characteristics. Thousands of microcapillary tubes fused together define MCP and act in unison such that each microcapillary serves as a tiny BPE surrounding an infinitesimal element of bulk electrolyte with a large surface-area-to-volume ratio and hence performs highly effective as compared to a planar electrode inlaid into a microchannel. This performance has been validated here where concentration enrichment of a fluorescent tracer has been demonstrated at a remarkable rate of up to 175-fold/s exceeding those reported for planar BPEs. We attribute such high performance to the rapid onset of ion-depletion zone and subsequent steep field gradient, signifying the high-porosity structure of MCP as an effective BPE.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.