Abstract

A mathematical model is developed to study the combined influences of electromagnetohydrodynamic forces in controlling the fluid flow through parallel plate rectangular microchannels. The electric double layer (EDL) effects are modelled by employing the classical Poisson–Boltzmann equation. The governing fluid flow equations are subsequently solved, in an effort to obtain closed form expressions depicting the variations in the overall flow rate as a function of various influencing system parameters. It is revealed that, with the aid of a relatively low-magnitude magnetic field, a substantial augmentation in the volumetric flow rates can be achieved. However, with magnetic fields of higher strengths, strongly opposing volumetric forces might offset any further possibilities of flow rate augmentation. Certain critical non-dimensional parameters are also identified, which can play significant roles in the overall flow augmentation mechanism.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.