Abstract
Energy recovery is gaining importance in various industrial process applications because of rising energy costs and geopolitical uncertainties impacting basic energy supplies. Various advanced energy recovery / conversion technologies will require high-performance heat transfer characteristics typical of micro- and mini-channel heat exchangers to achieve energy recovery performance targets and requirements. Initial engineering scoping studies have focused on advanced thermoelectric generator (TEG) systems assuming exhaust gas temperatures of 1033 K (1400 °F) and ambient environment temperatures of 300 K. The engineering analysis used a coupled, integrated thermoelectric (TE) system analysis accounting for the heat exchange / heat transfer performance at both the hot and cold sides and optimum TE device performance to properly predict the power output potential, resulting temperatures and temperature differentials, TEG design and interface requirements, and thermal characteristics across a wide spectrum of potential operating temperature conditions. Modular TEG's capturing about 5% of typical industrial process (e.g., glass manufacturing process) exhaust flows appear to have potential power outputs of 4 - 6 kW using advanced TE materials. Hot-side & cold-side heat exchange requirements were quantified and performance metrics evaluated to enable effective implementation of advanced TEG systems in industrial process energy recovery. Hot side heat transfer requirements create serious engineering, and possibly, scientific challenges to enabling energy conversion systems, including TEG's, in industrial process energy recovery. Future advanced heat transfer R&D is necessary and should occur in parallel with on-going advanced TE materials and systems R&D.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.