Abstract

We fabricated a device equipped with a microchannel on a complementary metal oxide semiconductor (CMOS) sensor to observe the optical polarization rotation angle during in situ monitoring. The sensor is based on the integrated wire-grid polarization detection method. The microchannel is fabricated on a Si layer by deep reactive ion etching (DRIE). Using this device, we measured the optical rotation of chiral molecules in a microfluid. This showed that the device is applicable to in situ chiral measurement. Optical rotation angles of the linearly polarized light corresponded to different concentrations of sucrose solution. Sensor output reflecting the temporal concentration change of chiral molecules was also observed. These results clearly demonstrate that the CMOS sensor has the capability of measuring chiral molecules in situ.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.