Abstract

AbstractLow-density, microcellular polymer foams have numerous applications as structural supports in high-energy physics experiments, in catalysis, ion exchange, and filtration, and for a variety of biomedical uses. A versatile method to prepare such foams is by thermally-induced phase separation (TIPS) of polymer solutions. Demixed solutions can be transformed into a foam by freezing the demixed solution and removing the solvent by freeze-drying. The morphology of these foams is determined by the thermodynamics and kinetics of phase separation. A model of both the early and late stage structure development for demixed polymer solutions will be presented. For semi-crystalline polymers, gels can be prepared by crystallizing the polymer from solution, either a homogeneous solution or a demixed solution. Foams can be prepared from these gels by the super-critical extraction of the solvent. By understanding and utilizing the phase separation behavior of polymer solutions, engineered microcellular foams can be prepared. To design the foams for any application one must be able to characterize their morphology. Results will be presented on the morphological characterization of these foams and the relationship of the morphology to their processing history.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call