Abstract

Self-reporting polymers, which can indicate damage or exposure to excessive stress with a clearly perceptible optical signal, are potentially useful for several technological applications, including stress-sensitive sensors that enable in situ monitoring of mechanical events and structural health monitoring systems. A versatile and simple concept to realize this function is the exploitation of microcapsules that are filled with solutions of dyes that are released and chemically or physically activated when the protective shell is damaged. Such microcapsules can readily be incorporated into polymers and the composites thus made can be processed into films, coatings, or other objects. Mechanochromic effects can be realized with different types of dyes and activation schemes. In this concept article, a selection of recent key studies is presented to provide an overview of the state of the field. Different architectures and operating principles and their advantages and drawbacks are reviewed. The parameters that influence the design of microcapsule-based mechanochromic systems are considered and unexplored chromophore systems that might be useful to design future self-reporting polymers are discussed. Finally, specific aspects of capsule design, fabrication, and integration into polymers are presented. Throughout the article, challenges and opportunities of the concept are highlighted and possible future directions are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.