Abstract

Cell co-culture plays a key role in inducing the committed differentiation of stem cells in vitro, which mimics the specific tissue microenvironment in vivo by means of co-cultured inducing cells. However, the present cell co-culture systems limit the application of differentiated cells due to the safety and the scale of these systems. This study established a novel microcapsule co-culture system and investigated the probable effect of microencapsulated co-cultured neural cells on neural differentiation of mesenchymal stem cells (MSCs) ex vivo. Mouse bone marrow-derived MSCs were co-cultured with SHSY5Y cells microencapsulated in alginatepolylysine-alginate (APA) microcapsules. The quantitative and qualitative analysis showed that the expression of Nestin (Nes) was significantly increased at both gene and protein levels in the microcapsule co-culture system compared with other systems without cell co-culture, which indicated that more neural progenitors were obtained from this novel microcapsule co-culture system. According to our results and the unique characteristics of microcapsules, it is possible that large-scale cell co-culture system based on the combination of microcapsule and bioreactor technologies will be developed to generate numerous MSCs-derived neural progenitors for clinical applications in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.