Abstract
A microcapillary-based multicolor assay was developed for proteins quantification in serum sample with the assistance of manual centrifugal platform. The proposed assay only required the operation of “one suction and one extrusion” to realize the target detection. Myoglobin (Myo), a biomarker in the early stage of acute myocardial infarction (AMI), was chosen as the model target. The microcapillary was first modified with polydopamine (PDA), then Myo aptamer was immobilized on the PDA modified microcapillary and hybridized with glucose oxidase (Gox) functionalized DNA probe (DNA-Gox). The step “one suction” referred to the inhalation of the sample into the functionalized microcapillary. Then the target Myo in the sample could bind to the Myo aptamer on the microcapillary so that DNA-Gox complexes were released from the microcapillary into solution. Through the step “one extrusion”, the DNA-Gox complexes in the solution could catalyze glucose to generate hydrogen peroxide, and then the etching of gold nanorods (AuNRs) was initiated, causing a color change from brown to yellow. According to the color change based on the etching of AuNRs, as low as 0.1 nM Myo was detected with naked eyes. Combined with the manual centrifugal platform, even the Myo in the serum samples could be detected without power supply. It was expected to build a universal and adaptable sensing platform for different targets more quickly and efficiently.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Biosensors and Bioelectronics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.