Abstract
This paper describes the design, fabrication, and characterization of microcantilever hotplates having both a resistive heater and temperature-compensated piezoresistive strain gauges. The heater was defined near the cantilever free end and the piezoresistive strain gauges were integrated near the clamped base. To realize temperature compensation, a pair of identical piezoresistors was defined in close proximity. One piezoresistor was aligned to the 〈1 1 0〉 crystal direction where the piezoresistive coefficient is maximized and the other one was aligned to the 〈1 0 0〉 crystal direction where the piezoresistive coefficient is nearly zero. The fabricated devices exhibit excellent temperature compensation, with a 20× reduction in temperature sensitivity. The deflection sensitivity shifted only 10% for heating to 200 °C and cantilever deflection ∼10 μm. This work enables cantilever strain sensors that could measure temperature-dependant phenomena.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.