Abstract

This paper presents label-free characterization of temperature-dependent biomolecular affinity binding on solid surfaces using a microcantilever-based device. The device consists of a Parylene cantilever one side of which is coated with a gold film and functionalized with molecules as an affinity receptor to a target analyte. The cantilever is located in a poly(dimethylsiloxane) (PDMS) microfluidic chamber that is integrated with a transparent indium tin oxide (ITO) resistive temperature sensor on the underlying substrate. The ITO sensor allows for real-time measurements of the chamber temperature, as well as unobstructed optical access for reflection-based optical detection of the cantilever deflection. To test the temperature-dependent binding between the target and receptor, the temperature of the chamber is maintained at a constant setpoint, while a solution of unlabeled analyte molecules is continuously infused through the chamber. The measured cantilever deflection is used to determine the target-receptor binding characteristics. We demonstrate label-free characterization of temperature-dependent binding kinetics of the platelet-derived growth factor (PDGF) protein with an aptamer receptor. Affinity binding properties including the association and dissociation rate constants as well as equilibrium dissociation constant are obtained, and shown to exhibit significant dependencies on temperature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call