Abstract

The ortho-para conversion of H(3) (+) and H(2) in the reaction H(3) (+)+H(2)-->(H(5) (+))(*)-->H(3) (+)+H(2) in interstellar space is possible by scrambling the five protons via (H(5) (+))(*) complex formation. The product distribution of the ortho-para conversion reaction can be given by ratios of cumulative reaction probabilities (CRP) calculated by microcanonical statistical theory with conservation of energy, motional angular momentum, nuclear spin, and parity. A statistical method to calculate the state-to-state reaction probabilities for given initial nuclear spin species, rotational states, and collision energies is developed using a simple semiclassical approximation of tunneling and above-barrier reflection. A new calculation method of branching ratios for given total nuclear spins and scrambling mechanisms is also developed. The anisotropic long-range electrostatic interaction potential of H(2) in the Coulomb field of H(3) (+) is taken into account using the first-order perturbation theory in forming the complex. The CRPs and the product distribution of the ortho-para conversion reaction at very low energies with reactants in their ground vibronic and lowest rotational states for given initial nuclear spin species are presented as a function of collision energy assuming complete proton scrambling or incomplete proton scrambling. The authors show that the product distribution at very low energies (or very low temperatures) differs substantially from the high energy (or high temperature) limit branching ratios.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.