Abstract

The density of states of long-range Blume—Emery—Griffiths (BEG) and short-range Ising models are obtained by using Wang—Landau sampling with adaptive windows in energy and magnetization space. With accurate density of states, we are able to calculate the microcanonical specific heat of fixed magnetization introduced by Kastner et al. in the regions of positive and negative temperature. The microcanonical phase diagram of the Ising model shows a continuous phase transition at a negative temperature in energy and magnetization plane. However the phase diagram of the long-range model constructed by peaks of the microcanonical specific heat looks obviously different from the Ising chart.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.