Abstract

The LCST phase-transition of aqueous PNIPA solutions in rising concentrations of the strong chaotropic salt KSCN was studied microcalorimetrically by DSC and apparently for the first time by ITC. An endothermic (entropy driven) binding of KSCN onto PNIPA was observed, explained by electrostatic perturbation of hydrophobic hydration by adsorbed ions. A good fit was found for the one-type-of-sites binding model, and the binding affinity increased with rising temperature from 15 to 20 °C but decreased at 25 °C. DSC measurements emphasized the lowering and broadening of the endothermic peak of PNIPA phase-transition with rising KSCN concentration, explained by reduced cooperativity of coil-to-globule collapse with increased heterogeneity along the polymer chain, caused by salt adsorption. A hysteresis was observed between heating and cooling DSC peaks, which decreased asymptotically with rising KSCN concentration, further supporting that binding occurs. This work provides new insights into the mechanisms of c...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.