Abstract

Acetylcholinesterase (AChE) is an important enzyme responsible for the cleavage of acetylcholine. Studies of the activity of this enzyme use an artificial substrate, acetylthiocholine, because a product of its catalysis, thiocholine, readily generates a light absorbing product upon reaction with Elman’s reagent 5,5’-dithiobis-(2-nitrobenzoic acid (DTNB). The hydrolysis of acetylcholine cannot be assayed with this method. The isothermal titration calorimetry can assay the hydrolysis of both substrates, without requiring additional reagents other than the enzyme and the substrate. To compare kinetic values obtained in the hydrolysis of acetylcholine (ACh) and acetylthiocholine (ATCh), with carbaryl acting as inhibitor, a calorimetric technique was used to evaluate kinetic properties of the two reactions. This method can show the hydrolysis of both substrates by the heat exchange that occurs during catalysis. In addition, it allowed the assessment of the AChE inhibition by carbaryl, a common insecticide. The results show a similarity between values obtained with both substrates, which are slightly higher for acetylcholine, the enzyme natural substrate. Enzymatic parameters values from ATCh and ACh were similar to each other and inhibitory constants using carbaryl were also similar, displaying that any approach to ACh is feasible using ATCh. The results obtained from ITC show the precision achieved by the calorimetric method.

Highlights

  • The isothermal titration calorimetry can assay the hydrolysis of both substrates, without requiring additional reagents other than the enzyme and the substrate

  • To compare kinetic values obtained in the hydrolysis of acetylcholine (ACh) and acetylthiocholine (ATCh), with carbaryl acting as inhibitor, a calorimetric technique was used to evaluate kinetic properties of the two reactions

  • The results show a similarity between values obtained with both substrates, which are slightly higher for acetylcholine, the enzyme natural substrate

Read more

Summary

Introduction

Acetylcholinesterase (AChE) (3.1.1.7) is one of the best studied enzymes found in scientific literature, partly due to its physiological role in the neurotransmis-. A. de Almeida Neves et al 2 sion process and to the remarkably high efficiency displayed by AChE, which has a large turnover number [1] [2]. AChE is responsible for the cleavage of acetylcholine (ACh) within the neuromuscular junction and the synaptic cleft in the central nervous system of both vertebrates and invertebrates [3] [4]. AChE inhibitors have pharmaceutical and commercial importance, and side effects should be an important issue to be considered [6]

Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.