Abstract
Control of the microbunching instability is a fundamental requirement in modern high-brightness electron linacs, in order to prevent misleading responses of beam optical diagnostics and contamination in the generation of coherent radiation, such as free electron lasers. We present the first experimental demonstration of control and suppression of microbunching instability by means of particles' longitudinal phase mixing in a magnetic chicane. In the presence of phase mixing, the intensity of the beam-emitted optical transition radiation, which is used as an indicator of the instability gain at optical wavelengths, is reduced by one order of magnitude and brought to the same level provided, alternatively, by beam heating. The experimental results are in agreement with particle tracking and analytical evaluations of the instability gain. This article is extended to a discussion of applications of magnetic-phase mixing to the generation of quasicold high-brightness ultrarelativistic electron beams.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.