Abstract
In recent years, microbubble technology has attracted great attention in many application fields including water treatment, food processing, oil recovery, surface cleaning, and therapeutic applications. In this paper, microbubbles (MBs) of air, nitrogen, and argon were applied to produce natural rubber latex foams (NRLFs). The bubbles were generated by flowing the gas through a porous diffuser and latex. The effect of gas source on cellular structure, density, elasticity, indentation hardness, and flammability of the bubbled foams was discussed. Argon MBs offered the latex foams with fine cell diameters and uniform cell size distribution resulting in enhanced elasticity and physical properties of the foams. Indentation hardness index and limiting oxygen index value depended significantly on the gas used. By using the microbubble technique, the future prospects in NRLF production can be expected due to its ability in controllable cellular structure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.