Abstract

Microbubbles have been involved in industrial processing since the 1970s with the introduction of dissolved air flotation into common practice. The turn of the century saw microbubbles become regularly used in medical imaging. But in bioprocessing, only this decade has seen rapid advances in R&D, with some bioprocesses, particularly in wastewater treatment, adopted at full industrial scale, and others at pilot scale, such as anaerobic digestion and fermentation, which is full industrial scale for many biomanufacturing and pharmaceutical processes. This article reviews the methods of microbubble generation only briefly, as it turns out only one generation method, fluidic oscillation through microporous diffusers, has the requisite features for introduction into full scale fermentation processes. Subsequently, six fundamental physicochemical hydrodynamics mechanisms that have been exploited by microbubble innovations in bioprocessing are presented and analyzed, particularly for the roles they play in bioprocessing applications. Some examples are drawn with applications to microalgal and yeast processing, as well as usage in wastewater treatment processes. Because the smallest microbubbles can increase rates in some of these six fundamental processes by several orders of magnitude over conventional processing methods, with the optimal contacting patterns, the promise for wider exploitation in bioprocessing is substantial.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.