Abstract

Acoustic tweezers hold great promise for potential applications in cell sorting due to their noncontact, noninvasive, and simple characteristics. Acoustic tweezers, however, have difficulty in separating the cells of the same size distribution, which hampers their applications. In this paper, we demonstrate that assisted by the targeted microbubble, two kinds of cells with an overlap in size distribution can be efficiently separated by surface acoustic waves. By specifically adhering the targeted microbubbles to MDA-MB-231 cells, the acoustic sensitivity of cells can be improved significantly, leading to the isolation of MDA-MB-231 from MCF-7 cells with an efficiency of 91.2 ± 3.4%. This method extends the diversity of acoustic separation and is capable of separation of particles with the same density and diameter, proving a strategy for specific cell sorting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.