Abstract

To identify the key structural properties of pectic polysaccharides that affect their gut fermentation behavior, structural characteristics and fecal fermentation ability of acid-extractable pectins obtained from 8 kinds of fruit and vegetable were compared. Results showed that the peach pectin presented a single molecular weight (Mw) distribution with large Mw (706.3 kDa), and the broccoli pectin owned high contents of arabinose (99.62 mg/g) and galactose (129.11 mg/g). Fermentation with these two pectins for 24 h improved the relative abundance of Bifidobacterium (13.42 % and 13.04 %, respectively), which had positive relation (p < 0.001) with Mw, arabinose and galactose. Hawthorn pectin was featured with low Mw, which also exhibited high linearity (6.96), supporting the relative abundance of Bacteroides (40.04 %) after fermentation. It had positive relation (p < 0.05) with linearity, acetate and butyrate. Tomato pectin was characterized by tri-Mw distribution with small polydispersity index (1.231, 1.120 and 1.106, respectively). Moreover, it displayed a compact and curved conformation in terms of smaller radius of gyration (Rg, 7.88 nm) and larger cross-sectional radius (Rc, 5.28 nm). Tomato pectin generated the highest content of short-chain fatty acids (61.59 mmol/L) among all the pectins after fermentation. Meanwhile, Ruminococcus was detected as key genera in the tomato pectin substrate, which was positively correlated (p < 0.05) with acetate, propionate, Rg and Rc. The correlation analysis further confirmed that Rg and arabinose content of the pectin have the greatest impact on the microbiota modification, followed by Rc and polydispersity index, promoting a deep understanding of the relationship between pectin structure and gut fermentation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.