Abstract
Microorganisms are translocated from the gut to lymphatic tissues via immune cells, thereby challenging and training the mammalian immune system. Antibiotics alter the gut microbiome and consecutively might also affect the corresponding translocation processes, resulting in an imbalanced state between the intestinal microbiota and the host. Hence, understanding the variant effects of antibiotics on the microbiome of gut-associated tissues is of vital importance for maintaining metabolic homeostasis and animal health. In the present study, we analyzed the microbiome of (i) pig feces, ileum, and ileocecal lymph nodes under the influence of antibiotics (Linco-Spectin and Colistin sulfate) using 16S rRNA gene sequencing for high-resolution community profiling and (ii) ileocecal lymph nodes in more detail with two additional methodological approaches, i.e., cultivation of ileocecal lymph node samples and (iii) metatranscriptome sequencing of a single lymph node sample. Supplementation of medicated feed showed a local effect on feces and ileal mucosa-associated microbiomes. Pigs that received antibiotics harbored significantly reduced amounts of segmented filamentous bacteria (SFB) along the ileal mucosa (p = 0.048; 199.17-fold change) and increased amounts of Methanobrevibacter, a methanogenic Euryarchaeote in fecal samples (p = 0.005; 20.17-fold change) compared to the control group. Analysis of the porcine ileocecal lymph node microbiome exposed large differences between the viable and the dead fraction of microorganisms and the microbiome was altered to a lesser extent by antibiotics compared with feces and ileum. The core microbiome of lymph nodes was constituted mainly of Proteobacteria. RNA-sequencing of a single lymph node sample unveiled transcripts responsible for amino acid and carbohydrate metabolism as well as protein turnover, DNA replication and signal transduction. The study presented here is the first comparative study of microbial communities in feces, ileum, and its associated ileocecal lymph nodes. In each analyzed site, we identified specific phylotypes susceptible to antibiotic treatment that can have profound impacts on the host physiological and immunological state, or even on global biogeochemical cycles. Our results indicate that pathogenic bacteria, e.g., enteropathogenic Escherichia coli, could escape antibiotic treatment by translocating to lymph nodes. In general ileocecal lymph nodes harbor a more diverse and active community of microorganisms than previously assumed.
Highlights
The gut-lymph node axis plays a key role in the symbiotic relationship between intestinal microbiota and the host immune system (Sansonetti, 2004; Kamada and Núñez, 2013)
Antibiotic treatment had a significant impact on 780 operational taxonomic units (OTUs) in fecesend, 114 OTUs in ileum, and 29 OTUs in ileocecal lymph node samples (ICLN) samples compared to the control group (Figure 3)
It is well known that an altered gut microbiome has outstanding effects on the mammalian immune system (Palm et al, 2016; Laforest-Laponte and Arrieta, 2017), but remarkably little is known about the actual role of the lymph nodeassociated microbiome
Summary
The gut-lymph node axis plays a key role in the symbiotic relationship between intestinal microbiota and the host immune system (Sansonetti, 2004; Kamada and Núñez, 2013). Despite the large number of microorganisms in the gastrointestinal (GI) tract, most of them do not induce harmful immune responses. This is essential, because the mucus-associated microbiota sets strong stimuli on the intestinal epithelial barrier along with the underlying lamina propria. DCs transport microorganisms to mesenteric lymph nodes – the key immune inductive site for microbial translocation control (Macpherson and Uhr, 2004; Macpherson and Smith, 2006). It is assumed that commensal bacteria can survive within DCs migrated to mesenteric lymph nodes for several days or weeks (Nagl et al, 2002; Macpherson and Uhr, 2004; Hooper et al, 2012; Gorvel et al, 2014). Our previous findings based on cultivation and cDNA amplicon sequencing of lymphatic tissues provide evidence that lymphatic tissues harbor a high diversity of living bacteria (Mann et al, 2014a, 2015a), which was shown for lymph nodes of healthy mule deer (Wittekindt et al, 2010)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.