Abstract
ABSTRACTThe fungi and bacteria number, as well as the species composition of the fungi in the ground air layer in the European Arctic region of Russia, primarily in the tundra (the Rybachy Peninsula), in the subzone of the northern taiga (the Pasvik State Nature Reserve) and in the industrial areas (the Copper-Nickel Plant “Pechenganickel,” the Kandalaksha Aluminum Plant) have been studied. One hundred and ninety-two atmosphere air samples of various ecosystems have been analyzed. The sample collection took place in the summer-autumn period (June, July, September, in 2012–2015) with the aspirator, precipitating microorganisms on the surface of media. The number of microorganisms per 1 m3 of air was calculated. The portion of the airborne fungi in the ground air layer both in the tundra and in the taiga was higher in comparison with the bacteria, and amounted to 60–77% of the total number colony forming units (CFU). The least number of microorganisms in the investigated period was registered in the Barents Sea coastal atmospheric air, only 11–15 microbial CFU per 1 m3. The airborne fungi diversity in the taiga zone was richer than in the tundra. The fungi of the g. Penicillium predominated in both zones air. Bacteria gram-positive (the division Fermicutes) predominated within the bacterial biota. The species Penicillium decumbens, P. raistrickii prevailed in the air of the background tundra zone regions. The representatives of the genus Torula and Sterilia mycelia, P. raistrickii predominated in the taiga zone. Close by the Copper–Nickel Plant (about 3 km), the air bacterial contamination (100–600 CFU per 1 m3) was revealed, with prevailing bacteria gram-negative (the division Gracilicutes). The species Cladosporium oxysporum predominated in the air to the greatest possible extent of the contaminated region due to the emissions of the Kandalaksha Aluminum Plant. The species Gongronella butleri were uppermost due to the emissions of the Copper–Nickel Plant «Pechenganickel». The quantity of the dark-pigmented fungi in the air for both zones amounted to 25% of the total amount within the emphasized species. The composition of the air industrial emissions stimulated the development of specific airborne fungi which are essentially different from those of the background regions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Environmental Science and Health, Part A
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.