Abstract

Objectives: Long-term ulcerative colitis (UC) is associated with both dysbiosis in intestinal microbiota and predisposition to colorectal cancer. In this study, we investigated whether microbiota from patients with UC could increase colorectal carcinogenesis in mice, generated by azoxymethane through intraperitoneal injection.Methods: Mice were gavaged twice per week with intestinal microbiota from patients with UC or healthy individuals. Intestinal tissues were collected from mice and compared by histology, immunohistochemistry, expression microarray, quantitative polymerase chain reaction, Western blot, and flow cytometry analyses. Quantification of bacteria in feces was performed using 16 S ribosomal RNA gene selective quantitative polymerase chain reaction.Results: Compared with mice fed microbiota from healthy controls, increased tumorigenesis was observed in mice gavaged with microbiota from patients with UC, including a higher number of colon adenoma and a significantly higher proportion of grade dysplasia. Consistent with tumorigenesis, mice gavaged with microbiota from patients with UC showed an increased expression of Ki67 and proliferating cell nuclear antigen. In addition, an increased expression of cytokines and more abundant presence of T helper cells types 1 and 17 was observed in mice receiving microbiota from patients with UC. Moreover, a decrease in the abundance of short-chain fatty acids was detected in the feces, as well as an altered intestinal microbial composition in mice fed with microbiota from patients with UC.Conclusions: Fecal microbiota from patients with UC exacerbate tumorigenesis in mice. The disturbance of intestinal microbiota and activation of T helper cells types 1 and 17 cytokines caused by gavaging microbiota from patients with UC both contributed to intestinal carcinogenesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.