Abstract

Background: It has been proposed that altered microbial colonization patterns during infancy may be partly responsible for the increase of allergic diseases in developed countries. The gut microbiota differs in composition and diversity during the first months of life in children who later do or do not develop allergic disease. However, little is known about the significance of early mucosal immune responses to the gut microbiota in childhood allergy development, and the findings regarding the protective effect of breastmilk microbiota in the risk of allergy development have been inconclusive. Furthermore, even though the oral cavity is the first site of encounter between a majority of foreign antigens and the immune system, the influence of oral bacteria on allergy development during childhood has not yet been reported. Objectives: The general aim of this thesis was to assess the microbial composition and diversity of oral, fecal and breastmilk samples, together with its interaction with IgA, in order to study the role of microbial development during early childhood in health and allergic disease. Subjects: The infants and mothers included in this study were part of a larger randomized double-blind trial in Sweden, between 2001 and 2003, where potential allergy preventive effects of Lactobacillus reuteri ATCC 55730 were evaluated until 2 and 7 years of age. In this thesis, we used longitudinally collected stool and oral samples from infants, obtained at 1 and 12 months and 3, 6, 12, 24 months and 7 years of age, respectively. Furthermore, we analyzed breastmilk samples, collected at one month post partum, from the corresponding mothers. Methods: Next-generation sequencing technologies targeting the 16S rRNA gene, in combination with cell activated cell sorting, were used in order to address mucosal IgA responses towards gut and breastmilk bacteria. Furthermore, sequencing of the 16S rRNA gene was used in order to describe oral microbiota colonization, in longitudinally obtained saliva samples, from children developing allergy or staying healthy. Bacterial load levels in different microbial habitats were obtained by qPCR methodology and total IgA levels of stool samples were determined by ELISA immunoassays. Results and conclusion: Colonization of the oral cavity during early childhood is transitional, increasing in complexity with time, and several external factors appear to greatly influence oral microbiota maturation, having either a short or a long-term impact. Early changes in oral microbial composition seem to influence immune maturation and allergy development in childhood, and the presence of specific bacterial species may be important for this progress. Furthermore, altered IgA responses towards the gut microbiota during infancy preceded asthma and allergy manifestations during the first 7 years of life, and consumption of breastmilk with a reduced microbial richness in the first month of life may increase the risk for allergy development during childhood. Findings observed here need to be confirmed in larger cohorts and the importance of postnatal environmental factors for early microbiota development should be addressed further. Future research should go beyond characterization of bacterial community composition and investigate the functional mechanisms between early colonizing microorganisms, immune maturation and allergy and asthma development during childhood.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call