Abstract
Discoveries of bacterial communities in environments that previously have been described as sterile have in recent years radically challenged the view of these environments. In this study we aimed to use 16S rRNA sequencing to describe the composition and temporal stability of the bacterial microbiota in bovine milk from healthy udder quarters, an environment previously believed to be sterile. Sequencing of the 16S rRNA gene is a technique commonly used to describe bacterial composition and diversity in various environments. With the increased use of 16S rRNA gene sequencing, awareness of methodological pitfalls such as biases and contamination has increased although not in equal amount. Evaluation of the composition and temporal stability of the microbiota in 288 milk samples was largely hampered by background contamination, despite careful and aseptic sample processing. Sequencing of no template control samples, positive control samples, with defined levels of bacteria, and 288 milk samples with various levels of bacterial growth, revealed that the data was influenced by contaminating taxa, primarily Methylobacterium. We observed an increasing impact of contamination with decreasing microbial biomass where the contaminating taxa became dominant in samples with less than 104 bacterial cells per mL. By applying a contamination filtration on the sequence data, the amount of sequences was substantially reduced but only a minor impact on number of identified taxa and by culture known endogenous taxa was observed. This suggests that data filtration can be useful for identifying biologically relevant associations in milk microbiota data.
Highlights
The introduction of DNA based methods to study bacterial communities has in recent years stimulated interest and substantially challenged previous knowledge about environments thought to be sterile
In this study the milk somatic cell count (SCC) of a majority of the quarters were stable and 96.9% (279/288) of the samples had a value below 100 000 cells/mL, averaging 17 195 cells/mL (Fig 1)
Bacterial species identified by the Mastitis Laboratory at the National Veterinary Institute, Uppsala, Sweden were: Corynebacterium spp. (44 samples), mixed flora (15 samples) and Staphylococcus spp. (1 sample) (Table 1)
Summary
The introduction of DNA based methods to study bacterial communities has in recent years stimulated interest and substantially challenged previous knowledge about environments thought to be sterile. Placenta and airways are examples of environments that previously. Rewarded to SA, JD, MM, KPW, Ko. The funder had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.