Abstract

BackgroundInferring the microbiota diversity of helminths enables depiction of evolutionarily established ecological and pathological traits that characterize a particular parasite-host interaction. In turn, these traits could provide valuable information for the development of parasitosis control and mitigation strategy. The parasite Anisakis pegreffii (Nematoda: Anisakidae) realizes the final stage of its life-cycle within gastric chambers of aquatic mammals, causing mild-to-moderate granulomatous gastritis with eosinophilic infiltrate, to severe ulcerative gastritis with mixed inflammatory infiltrate, often associated with bacterial colonies. However, its interaction with the host microbiota remains unknown, and might reveal important aspects of parasite colonization and propagation within the final host.MethodsMySeq Illumina sequencing was performed for the 16S rRNA gene from microbiota isolated from larvae, and uterus and gut of adult A. pegreffii parasitizing stranded striped dolphins (Stenella coeruleoalba). To assess the potential presence of Brucella ceti within isolated microbiota, Brucella-targeted real-time PCR was undertaken. In addition, TEM of the gastrointestinal tract of the infective third-stage (L3) and transitioning fourth-stage larvae (L4) was performed to characterize the morphological differences and the level of larval feeding activity.ResultsIn total, 230 distinct operational taxonomic units (OTUs) were identified across all samples (n = 20). The number of shared taxa was lower than the number of taxa found specifically in each parasite stage or organ. The dominant taxon was Mycoplasmataceae (genus Mycoplasma) in the gut and uterus of adult A. pegreffii, whereas Fusobacteriaceae (genus Cetobacterium) was the most abundant in 40% of larvae, alongside Mycoplasmataceae. No B. ceti DNA was detected in any of the microbiota isolates. TEM revealed differences in gut ultrastructure between L3 and L4, reflecting a feeble, most likely passive, level of feeding activity in L3.ConclusionsMicrobiota from L3 was more related to that of the gut rather than the uterus of adult A. pegreffii. Taxa of the larval microbiota showed qualitative and quantitative perturbations, likely reflecting the propagation through different environments during its life-cycle. This suggests an ontogenetic shift in the alpha and beta diversity of microbial communities from uterus-derived towards cetacean-derived microbiota. Although TEM did not reveal active L3 feeding, microbiota of the latter showed similarity to that of an actively feeding adult nematode.

Highlights

  • Inferring the microbiota diversity of helminths enables depiction of evolutionarily established ecological and pathological traits that characterize a particular parasite-host interaction

  • After moulting to the infective third-stage larva (L3) stage, some nematodes such as Anisakis spp. persist in the host without essential development and growth [3]. This feature evolved as a consequence of the feeding preference of the final host toward a new prey, which feeds upon the intermediate host, and becomes a paratenic host

  • In vitro experiments have reported that after completion of Anisakis spp. moulting into stage four larvae (L4), the larval intestine becomes functional [7], subsequently enabling its massive colonization by the microbiota inhabiting the gastric chambers of the final host

Read more

Summary

Introduction

Inferring the microbiota diversity of helminths enables depiction of evolutionarily established ecological and pathological traits that characterize a particular parasite-host interaction These traits could provide valuable information for the development of parasitosis control and mitigation strategy. After moulting to the infective L3 stage, some nematodes such as Anisakis spp. persist in the host without essential development and growth (paratenesis) [3] This feature evolved as a consequence of the feeding preference of the final host toward a new prey, which feeds upon the intermediate host, and becomes a paratenic host. In vitro experiments have reported that after completion of Anisakis spp. moulting into stage four larvae (L4), the larval intestine becomes functional [7], subsequently enabling its massive colonization by the microbiota inhabiting the gastric chambers of the final host

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call