Abstract

BackgroundNumerous studies have shown that bacteria form stable associations with host corals and have focused on identifying conserved “core microbiomes” of bacterial associates inferred to be serving key roles in the coral holobiont. Because studies tend to focus on only stony corals (order Scleractinia) or soft corals (order Alcyonacea), it is currently unknown if there are conserved bacteria that are shared by both. A meta-analysis was done of 16S rRNA amplicon data from multiple studies generated via identical methodology to allow direct comparisons of bacterial associates across seven deep-sea corals, including both stony and soft species: Anthothela grandiflora, Anthothela sp., Lateothela grandiflora, Lophelia pertusa, Paramuricea placomus, Primnoa pacifica, and Primnoa resedaeformis.ResultsTwenty-three operational taxonomic units (OTUs) were consistently present in greater than 50% of the coral samples. Seven amplicon sequence variants (ASVs), five of which corresponded to a conserved OTU, were consistently present in greater than 30% of the coral samples including five or greater coral species. A majority of the conserved sequences had close matches with previously identified coral-associated bacteria. While known to dominate tropical and temperate coral microbiomes, Endozoicomonas were extremely rare or absent from these deep-sea corals. An Endozoicomonas OTU associated with Lo. pertusa in this study was most similar to those from shallow-water stony corals, while an OTU associated with Anthothela spp. was most similar to those from shallow-water gorgonians.ConclusionsBacterial sequences have been identified that are conserved at the level of class Anthozoa (i.e., found in both stony and soft corals, shallow and deep). These bacterial associates are therefore hypothesized to play important symbiotic roles and are highlighted for targeted future study. These conserved bacterial associates include taxa with the potential for nitrogen and sulfur cycling, detoxification, and hydrocarbon degradation. There is also some overlap with kit contaminants that need to be resolved. Rarely detected Endozoicomonas sequences are partitioned by whether the host is a stony coral or a soft coral, and the finer clustering pattern reflects the hosts’ phylogeny.

Highlights

  • Numerous studies have shown that bacteria form stable associations with host corals and have focused on identifying conserved “core microbiomes” of bacterial associates inferred to be serving key roles in the coral holobiont

  • After filtering and removal of low-read samples, this was reduced to 2,205,336 sequences across 51 samples: 12 samples of A. grandiflora, 4 samples of Anthothela sp., 3 samples of Anthothela ND, 1 sample of L. grandiflora, 12 samples of Lo. pertusa, 3 samples of P. placomus, 6 samples of Pr. pacifica, and 10 samples of Pr. resedaeformis (Additional file 5)

  • While there were no operational taxonomic units (OTUs) that were present in 100% of the samples, there were 23 OTUs present in more than 50% of the coral samples (Table 1)

Read more

Summary

Introduction

Numerous studies have shown that bacteria form stable associations with host corals and have focused on identifying conserved “core microbiomes” of bacterial associates inferred to be serving key roles in the coral holobiont. With the increase in sequencing depth afforded by second-generation sequencing, studies began focusing on identifying “core microbiomes” of bacterial associates consistently found in some percentage, preferably 100%, of samples of a particular coral [14,15,16]. These conserved bacterial associates are inferred to be serving key roles in the coral holobiont, and identifying and studying them should yield insights into coral biology and microbial symbiosis. Recent studies of deep-sea corals, both stony and soft, have found Endozoicomonas to be rare or undetected in their microbiomes [10, 11, 27, 28]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call