Abstract

Aim:This study aimed to determine the bacterial composition at various stages of the temperature regime in a recirculating aquaculture system (RAS) to assess the pathological risk of a group of opportunistic pathogenic microflora.Materials and Methods:Water temperature, incidences of illnesses, and fish mortality were monitored, during the research period to identify the causes of pathogens in sturgeons. Analysis of the nucleotide sequences was performed using the quantitative insights into microbial ecology module. Sequence alignment in the analysis of the distribution of gene libraries was performed using the Unclust method. The RDP database was used for the taxonomic identification of operational taxonomic units.Results:The pattern of the contraction of infection among sturgeons bred in the RAS was established. A detailed analysis of the microbiome structure’s taxonomic features showed dominant taxa during the “artificial wintering” period and at a temperature optimum in industrial aquaculture. It was found that the main outbreaks of pseudomonosis occurred during this period in the RAS. With a decrease in temperature of the aquatic environment, the incidence of illness increased by 75% compared with the optimum temperature period. Pseudomonas, Cetobacterium, and Lactococcus were specific taxa characteristic for the “artificial wintering” period. Xanthomonadaceae and Flavobacterium were specific taxa characteristic for the optimum temperature.Conclusion:Consequently, the microbial structure was determined at different temperature regimes in a RAS, and the dominant communities were identified. The pattern of the contraction of infection caused by an opportunistic microflora (pseudomonosis) among sturgeons was established, allowing for the development and correction of treatment and preventive measures.

Highlights

  • The technogenic method of growing sturgeon fish and their hybrids in a recirculating aquaculture system (RAS) is becoming popular globally

  • The pattern of the contraction of infection caused by an opportunistic microflora among sturgeons was established, allowing for the development and correction of treatment and preventive measures

  • There was a decrease in the incidence rate associated with the sturgeons’ adaptation to the conditions of “artificial wintering,” but an increase in mortality to 50-60% from the moment of gradual decrease in the water temperature in the RAS and 90% from the beginning of the experiments conditioned by transiting the disease to a generalized form

Read more

Summary

Introduction

The technogenic method of growing sturgeon fish and their hybrids in a recirculating aquaculture system (RAS) is becoming popular globally. When the most optimal conditions for fish are created in the RAS, the recovery period after intravital caviar pumping is reduced, which increases the volume of production compared with natural caviar extraction. The development of this alternative method allows saving and restoring sturgeon stocks in natural reservoirs by reducing fishing pressure on their populations [1,2]. The Creative Commons Public Domain Dedication waiver (http:// creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call