Abstract

The recent outbreak of Sea Star Wasting Disease (SSWD) is one of the largest marine epizootics in history, but the host-associated microbial community changes specific to disease progression have not been characterized. Here, we sampled the microbiomes of ochre sea stars, Pisaster ochraceus, through time as animals stayed healthy or became sick and died with SSWD. We found community-wide differences in the microbiomes of sick and healthy sea stars, changes in microbial community composition through disease progression, and a decrease in species richness of the microbiome in late stages of SSWD. Known beneficial taxa (Pseudoalteromonas spp.) decreased in abundance at symptom onset and through disease progression, while known pathogenic (Tenacibaculum spp.) and putatively opportunistic bacteria (Polaribacter spp. and Phaeobacter spp.) increased in abundance in early and late disease stages. Functional profiling revealed microbes more abundant in healthy animals performed functions that inhibit growth of other microbes, including pathogen detection, biosynthesis of secondary metabolites, and degradation of xenobiotics. Changes in microbial composition with disease onset and progression suggest that a microbial imbalance of the host could lead to SSWD or be a consequence of infection by another pathogen. This work highlights the importance of the microbiome in SSWD and also suggests that a healthy microbiome may help confer resistance to SSWD.

Highlights

  • Symptom progression of infectious diseases has been thought to be the result of one pathogenic organism infecting a host

  • At each sampling time point, individuals were inspected for Sea Star Wasting Disease (SSWD) signs which were classified based on severity according to the P. ochraceus SSWD symptom guide as follows: (0) healthy; (1) one lesion on one ray or the central body; (2) lesions on two rays, one ray and the central body, or deteriorating rays; (3) lesions on most of the body and/or one or two missing rays; (4) severe tissue deterioration and/or three or more missing rays; (5) dead[25]

  • After quality control and filtering, we identified 1,064 Operational Taxonomic Units (OTUs) represented across all samples based on homology with the Greengenes Database

Read more

Summary

Introduction

Symptom progression of infectious diseases has been thought to be the result of one pathogenic organism infecting a host. We used repeated time-course sampling of initially asymptomatic adult P. ochraceus maintained in individual aquaria as they naturally progressed through SSWD and compared their microbial community composition to samples from stars collected from the same population and maintained in the same conditions that remained healthy This experimental design controlled for the variation in microbiota between individuals to allow us to test several hypotheses: (1) that there are microbial community differences between sick and healthy sea stars, (2) that there is a remodeling and eventual simplification of the bacterial community through disease progression, and (3) that time course sampling of healthy and sick animals can reveal beneficial, putatively pathogenic, and opportunistic microbes in disease

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call