Abstract

Colorectal cancer (CRC) is the third most common cancer and the second leading cause of cancer deaths worldwide. Early diagnosis of CRC, which saves lives and enables better outcomes, is generally implemented through a two-step population screening approach based on the use of Fecal Immunochemical Test (FIT) followed by colonoscopy if the test is positive. However, the FIT step has a high false positive rate, and there is a need for new predictive biomarkers to better prioritize cases for colonoscopy. Here we used 16S rRNA metabarcoding from FIT positive samples to uncover microbial taxa, taxon co-occurrence and metabolic features significantly associated with different colonoscopy outcomes, underscoring a predictive potential and revealing changes along the path from healthy tissue to carcinoma. Finally, we used machine learning to develop a two-phase classifier which reduces the current false positive rate while maximizing the inclusion of CRC and clinically relevant samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.