Abstract

Mediterranean mussels (Mytilus galloprovincialis), due to their nutritional mechanisms which involve filtering huge amounts of water, are affected by seawater pollution and can host microbial diversity of environmental origin, as well as pathogenic bacteria that must be constantly monitored. Herein, we applied a Next Generation Sequencing (NGS) metabarcoding approach in order to study the M. galloprovincialis microbiota. Collection of samples was conducted during winter and summer months from various mussel farm zones located in specific farm regions in the Thermaikos gulf, the northern Aegean Sea, Greece. A microbiological test was performed for the enumeration of Escherichia coli and the presence of Salmonella sp. DNA extraction and amplification of the whole bacterial 16S rRNA gene, followed by NGS amplicon sequencing and taxonomic classification, were carried out. Statistically significant differences (p < 0.05) in the abundance of the most dominant bacterial phyla, families and genera between winter and summer time periods, regions, as well as zones within each region of sampling, were evaluated with z-score computation. According to the obtained results, the most prevalent taxa at the genus level were Mycoplasma (12.2%), Anaplasma (5.8%), Ruegeria (5.2%) and Mariniblastus (2.1%). Significant differences in the abundance of the most dominant genera were found at all levels of comparison (seasons, regions and zones within each region), highlighting the dynamic character of microorganisms, which might be affected by microenvironmental, temporal and spatial changes. The present research contributes to the characterization of M. galloprovincialis microbiome in areas that have not been studied previously, setting the baseline for future, more thorough investigations of the specific bivalve species and its bacterial profile in the above geographic regions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.