Abstract

The intestinal microbiome produces short-chain fatty acids (SCFAs) from dietary fiber and has specific effects on other organs. During endurance exercise, fatty acids, glucose, and amino acids are major energy substrates. However, little is known about the role of SCFAs during exercise. To investigate this, mice were administered either multiple antibiotics or a low microbiome-accessible carbohydrate (LMC) diet, before endurance testing on a treadmill. Two-week antibiotic treatment significantly reduced endurance capacity versus the untreated group. In the cecum acetate, propionate, and butyrate became almost undetectable in the antibiotic-treated group, plasma SCFA concentrations were lower, and the microbiome was disrupted. Similarly, 6-wk LMC treatment significantly reduced exercise capacity, and fecal and plasma SCFA concentrations. Continuous acetate but not saline infusion in antibiotic-treated mice restored their exercise capacity (P < 0.05), suggesting that plasma acetate may be an important energy substrate during endurance exercise. In addition, running time was significantly improved in LMC-fed mice by fecal microbiome transplantation from others fed a high microbiome-accessible carbohydrate diet and administered a single portion of fermentable fiber (P < 0.05). In conclusion, the microbiome can contribute to endurance exercise by producing SCFAs. Our findings provide new insight into the effects of the microbiome on systemic metabolism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.