Abstract

Abstract The microbiologically influenced corrosion (MIC) behavior of 304 stainless steel by sulfate-reducing bacteria (SRB) in ZnO nanofluids was studied by electrochemical measurements, antibacterial activity tests and surface analysis. The results showed that ZnO nanoparticles (NPs) had little effect on the corrosion resistance of 304 stainless steel, but could effectively inhibit the MIC of stainless steel and reduce the adhesion of biofilm on its surface, which was related to the antibacterial effect of ZnO NPs. The antibacterial effect of 100 mg/L ZnO NPs reached 89.5 %. Electrochemical tests showed that with the increase of the concentration of ZnO NPs, the passive current density of the stainless steel electrode decreased, the film resistance increased in ZnO nanofluids containing SRB, and the MIC was inhibited. The antibacterial effect of ZnO NPs is mainly due to the formation of strongly oxidising ·OH in water. The presence of ZnO NPs inhibited the formation of biofilm and deposition of sulfide on stainless steel surface, thus slowing down the corrosion damage of SRB to stainless steel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call